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Critical-point finite-size scaling in the microcanonical ensemble

A. D. Bruce and N. B. Wilding
Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United Kingdom

~Received 21 April 1999!

We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy~density of
states! of a system with a critically divergent heat capacity. The link between the microcanonical entropy and
the canonical energy distribution is exploited to establish the former, and corroborate its predicted scaling
form, in the case of the 3d Ising universality class. We show that the scaling behavior emerges clearly when
one accounts for the effects of the negative background constant contribution to the canonical critical specific
heat. We show that this same constant plays a significant role in determining the observed differences between
the canonical and microcanonical specific heats of systems of finite size, in the critical region.
@S1063-651X~99!07510-8#

PACS number~s!: 05.20.Gg, 05.70.Jk, 64.60.Fr, 02.70.Lq
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I. INTRODUCTION

Statistical mechanics can be formulated in any of a se
ensembles distinguished by the relationship between the
tem and its environment@1#. The principal members of this
set are the microcanonical~prescribed energy! and canonical
~prescribed temperature! ensembles. In the thermodynam
limit ~when it exists! the ensembles yield the same pred
tions ~and are, in this sense, equivalent!, and the choice of
ensemble is a matter of practical convenience. The canon
ensemble tends to win this contest because it circumn
gates the hard-constant-energy constraint imposed by the
crocanonical ensemble.

The two ensembles are, however, not always equiva
@2#. They differ for systems which are ‘‘small’’ in som
sense: inherently small systems such as nuclei or clusters@3#;
systems with unscreened long-range forces@4#, where the
thermodynamic limit is problematic; and systems at criti
points @5#, which are our principal concern here.

Theoretical studies of critical phenomena are almost
variably conducted within the framework of the canonic
ensemble@6#. As a consequence there is no substant
framework within which to interpret computational studi
of microcanonical critical behavior. Such studies do, nev
theless, exist, having been motivated, variously, by the be
that the microcanonical framework may have some com
tational advantages@7# and by the discovery@8# that, appar-
ently, critical anomalies in the microcanonical heat capac
are significantly enhanced with respect to their canon
counterparts.

This paper goes some way toward supplying the miss
framework. We develop~Sec. II! a finite-size-scaling theory
@9# for the microcanonical entropy~the density of states! of a
system with a critically divergent heat capacity. In so doi
we have, of necessity, to consider more general quest
about the structure of the density of states of a finite-s
system —in particular the implications of well-establish
results for the finite-size structure of the canonical partit
function @10#.

Though somewhat more than a phenomenology,
theory falls short of being microscopically explicit: to dete
mine an explicit form for the relevant scaling function w
PRE 601063-651X/99/60~4!/3748~13!/$15.00
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need to appeal~Sec. III! to Monte Carlo~MC! measurements
of the criticalcanonicalenergy probability distribution~pdf!.

The canonical energy pdf itself has a near-critical fini
size-scaling form which was featured in a number of stud
of critical points in fluids@11# and lattice gauge theories@12#.
Since energy fluctuations~like the critical anomaly in the
canonical specific heat which they control! are relatively
weak ~by comparison with the fluctuations of the order p
rameter, and the divergence of its response function! the de-
gree of ‘‘scaling’’ reported in previously measured ener
pdfs has been relatively poor—unsatisfactorily so for o
purposes here. This problem is addressed in Sec. III.
show that one can fold out~from the measured distributions!
the subdominant~but significant! nonscaling effects that ar
associated with the constant background contribution to
canonical heat capacity,negativein the case of the 3d Ising
model@13#. This procedure exposes the underlying behav
which manifests scaling to an impressive degree. In addi
to providing us with the platform needed for this work, th
procedure may offer the basis for improving the mixe
scaling-field theory@11# of critical points in systems tha
belong to the Ising universality class but which do not ha
full Ising symmetry; recent studies@12# have suggested tha
the current framework is not fully satisfactory.

The scaling form for the critical energy pdf allows us
determine the scaling form of the microcanonical entropy.
Sec. IV we explore this form, and show that it is consiste
with predictions for both the bulk-critical limit~as regards
the parameters characterizing the specific heat singula
@13#! and the finite-size critical limit~the Fisher-Privman
constant@14#!.

The microcanonical entropy also provides us with a u
fied basis for dealing with both the canonical and the mic
canonical specific heats~Sec. V!. We show that the ‘‘correc-
tions’’ to the scaling behavior of the canonical specific he
~the negative background constant! have subtle conse
quences for the microcanonical behavior. In particular th
serve toamplify the difference between microcanonical a
canonical behavior, and are at least partially responsible
the strength of the anomaly observed in some microcan
cal studies@8#.
3748 © 1999 The American Physical Society
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II. MICROCANONICAL SCALING ANSATZ

We consider ad-dimensional many-body system of line
dimensionL; we assume hypercubic geometry with period
boundary conditions. The canonical partition function is,
principle, a discrete sum over system microstates~r! or sys-
tem energy levels (s),

Z~b,L !5(
r

e2bEr5(
s

Vse
2bEs, ~1a!

whereVs is the degeneracy of levels. We shall suppose tha
the system is sufficiently large that the sum over levels
be replaced by an integral

Z~b,L !5E deV~e,L !e2bLde, ~1b!

wheree[E/Ld is the energy density. The functionV(e,L)
is the density of states; as we have defined it, it is a tru
density, having dimensions of inverse energy. We note
the transition from the discrete representation@Eq. ~1a!# to its
continuum counterpart@Eq. ~1b!# requires some care: this i
discussed in Appendix A.

Our microcanonical scaling theory comprises a propo
for the form of the density of states function. We formulate
in two stages. Consider first a regime remote from criti
points or lines of phase coexistence. In such a regime
make the general finite-size ansatz@15#

V~e,L !.F2Lds9~e!

2p G1/2

eLds(e). ~2!

The structure proposed for the prefactor makes this a l
more than simply adefinitionof the microcanonical entropy
density s(e). In its support we note, first, that one ma
readily verify it explicitly ~Appendix B! in the case of some
simple model systems. Second, we note the implications
the associated canonical partition function. Inserting Eq.~2!
into Eq. ~1b!, a saddle-point integration gives

Z~b,L !5F Ld

2pG1/2E de@2s9~e!#1/2eLd[s(e)2be]

5e2Ldf (b)@11O~L2d!#, ~3!

where

f ~b![bê2s~ ê !, ~4!

and ê is the solution of

b5s8~ ê !. ~5!

Equation~3! recovers the prefactor-free form of the cano
cal partition function believed to be widely appropriate
regions ~those where the saddle point integration is to
trusted! remote from critical points or lines of phase coexi
ence@10#. We note that this form is achieved by virtue of th
prefactor thatdoesappear in the density of states ansatz@Eq.
~2!#, which is just such as to cancel the contributions ma
by the fluctuations about the saddle point@16#.
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The argument we have given leaves open the possib
of power-law corrections to Eq.~3!. It has long been be-
lieved, and more recently established rather generally@10#,
that the corrections to the leading form are actuallyexponen-
tially small in the system size. Since the saddle-point in
gration necessarily generates power-law corrections,
must suppose that there are compensating power-law co
tions to the ansatz@Eq. ~2!# for the density of states. This
conclusion serves as a warning@already suggested by th
double appearance of the functions(e) in Eq. ~2!# that the
microcanonical framework faces problems which are skir
in the canonical formalism@17#.

Now, more specifically, consider a system, of the ki
specified above, in the vicinity of a critical point. We wi
suppose that the critical point has a divergent heat capa
where we need to be more specific we shall assume it
member of thed53 Ising universality class~or, more spe-
cially still, the d53 Ising model itself!. Within the microca-
nonical framework the critical point of such a system is
cated by a critical valueec of the energy density, sharpl
defined in the thermodynamic limit. We are concerned w
the behavior of the microcanonical entropy for energies
the vicinity of this critical value. To describe this regime w
introduce the dimensionless scaling variable@18#

x[aeL
1/ne~e2ec!, ~6!

where ae is an appropriate scale factor, and the index
defined by

1

ne
5

12a

n
, ~7!

with a the index~assumed positive! characterizing the hea
capacity divergence, andn the correlation length index@19#.
We now reformulate and extend our basic ansatz@Eq. ~2!#
with the proposal that, in a region of sufficiently largeL and
sufficiently smallue2ecu @20#,

V~e,L !.F2Lds9~e,L !

2p G1/2

eLds(e,L), ~8a!

with

Lds~e,L !.Ld@sc1bc~e2ec!#1S̃~x!. ~8b!

Heresc is an unimportant constant,bc is the critical inverse
temperature, andS̃(x) is a finite-size-scaling function, uni
versal given some convention on the scale factorae , intro-
duced in Eq.~6!. The remainder of this paper is devoted
providing support for this proposal, and exploring the stru
ture of the microcanonical entropy scaling function which
introduces.

III. DETERMINING THE SCALING FUNCTION

It should be possible to determine the finite-size-scal
function S̃(x) within the renormalization group framewor
@21#. We have not done that. Instead we have chosen to le
what we can about this function from its signatures in M
studies of thecanonicalensemble.

Consider, then, the implications of the scaling form E
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3750 PRE 60A. D. BRUCE AND N. B. WILDING
~8b! for the canonical partition function, Eq.~1b!. We sup-
pose initially ~we shall have to refine the suppositio
shortly! that the relevant part of the energy spectrum is
equately captured by Eq.~8b!. Then

Z~b,L !.e2Ldf 0(b)Z̃~y!, ~9!

where

f 0~b!5bec2sc ~10!

and

Z̃~y!5E dxA2S̃9~x!

2p
e2xy1S̃(x), ~11!

while

y5ae
21L1/n~b2bc! ~12!

provides a scaling measure of the deviation from the crit
temperature. We have made use of the hyperscaling rela
@19# which links the correlation length indexn and the heat
capacity indexa through

1

n
1

1

ne
5

22a

n
5d. ~13!

The scaling form of the free energy follows:

F~b,L ![2 ln Z~b,L !.Ldf 0~b!2 ln Z̃~y![F̃~b,L !.
~14!

The canonical energy pdf

P~eub,L ![Z21~b,L !V~e,L !e2bLde ~15!

may also be written in scaling form

P~eub,L !de[P~xuy,L !dx, ~16!

with

P~xuy,L !.Z̃21~y!A2S̃9~x!

2p
e2xy1S̃(x)[ P̃~xuy!.

~17!

The scaling predictions for the pdf may be tested by exa
ining its cumulants@22#, for which the free energy is a gen
erator:

e (n)~b,L ![~21!n11L2nd
]nF~b,L !

]bn
. ~18!

Equation~14! then implies that the cumulants have the sc
ing form

e (n)~b,L !.@aeL
1/ne#2nx̃(n)~y!1ecdn,1 , ~19!

where the scaled cumulantsx̃(n)(y) are universal functions:

x̃(n)~y!5~21!n
]nln Z̃~y!

]yn
. ~20!
-

l
on

-

-

The canonical mean of the energy density at critica
(b5bc) follows as

^e&c[e (1)~bc ,L !.ec1@aeL
(12a)/n#21x̃(1)~y50!.

~21!

MC measurements on the 3d Ising model using a range
system sizes~Fig. 1! are fully consistent with this behavior

Equation~14! implies, likewise, that the canonical var
ance of the energy density should have the power-law beh
ior

^e2&c2^e&c
2[e (2)~bc ,L !.ae

22L2d1a/nx̃(2)~y50!.
~22!

MC measurements~Fig. 2! are only partially consisten
with this prediction: the power law is confirmed, but with a
extrapolation whose intercept is far from zero. This incons
tency is reflected in the rather limited success~Fig. 3! of
attempts to collapse the measured energy pdf’s for differ
system sizes on to a single scaling form. The source of th

FIG. 1. The canonical mean of the energy density for the criti
d53 Ising model as a function of system size@24#. The statistical
errors are an order of magnitude smaller than the symbol size.
points markedL are taken from Ref.@25#. The relevant parameter
have been assigned the values@26# a50.108,n50.630 67, andbc

50.221 654 4. The arrow identifies the best-fit value for the int
cept, prescribing the constantec @Eq. ~21!#.

FIG. 2. The canonical variance of the energy density for
critical d53 Ising model as a function of system size@24#. The
statistical errors are an order of magnitude smaller than the sym
size. The parameters are as specified in Fig. 1. The arrow iden
the best-fit value for the intercept, prescribing the constantc0c @Eq.
~30!#.
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problems can be guessed from the implications of Eq.~22!
for the canonical specific heat, which it mirrors: the scali
form fails to capture the effects associated with the cons
background which constitutes the dominant correction
pure scaling~power-law divergence! of the canonical spe
cific heat.

There are two ways to rectify this failure. One might e
tend the theory to predict the behavior of the~very! finite
systems accessible to MC study; or one might seek to cor
the MC results to expose the true scaling behavior. We ad
the latter strategy.

Define

D f ~b,L ![L2d@F~b,L !2F̃~b,L !#, ~23!

the difference between the true free energy density and
asymptotic scaling form@see Eq.~14!#. We shall ignore the
effects of confluent singularities: they are not the domin
‘‘corrections to scaling’’ here. ThenD f (b,L) is analytic and
may be approximated, nearbc , by the expansion

D f ~b,L !. (
n50

`

D f c
(n)~b2bc!

n

n!
. ~24!

These additional contributions to the free energy imply
ditional contributions to the energy cumulants~Eq. 18!:

De (n)~b,L ![~21!n11L2(n21)d
]nD f ~b,L !

]bn
. ~25!

At criticality Eq. ~19! must then be modified to read

e (n)~bc ,L !5@aeL
1/ne#2n@ x̃(n)~y50!1Dxc

(n)~L !#1ecdn,1

[@aeL
1/ne#2nx(n)~y50,L !1ecdn,1 , ~26!

where

Dxc
(n)~L ![x(n)~y50,L !2 x̃(n)~y50!

5~21!n11ae
nLd2n/nD f c

(n) . ~27!

FIG. 3. The canonical pdf@Eqs.~15!–~17!# of the scaled dimen-
sionless energy densityx of the critical d53 Ising model, for a
range of system sizes. The scaled variable is defined in Eq.~6! with
the choice~cf. Fig. 1! ec520.9909. The scale factorae implicit in
the scale of thex variable is chosen such that@cf. Eq. ~6!# x5e
2ec for L510.
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The n51 correction is absent byfiat: the choice ofec en-
sures this. Then>3 corrections are sufficiently strongly ‘‘ir-
relevant’’ ~they vanish sufficiently strongly withL) that they
may reasonably be neglected. But then52 correction decays
only slowly,

Dxc
(2)~L !52ae

2L2a/nD f c
(2)5ae

2L2a/nc0c[2g~L !,
~28!

where the last stepdefines g(L) ~a convenient parameter!,
while

c0c[2D f c
(2)52

]2D f ~b,L !

]b2 U
bc

~29!

is identifiable as the constant ‘‘background’’ to the nea
critical canonical specific heat. With this addition, Eq.~22! is
modified to read

Ld@^e2&c2^e&c
2#.La/nae

22x(2)~y50,L !

5La/nae
22x̃(2)~y50!1c0c , ~30!

which is now fully consistent with the MC measurements
Fig. 2, with ~it is to be noted! a negativevalue forc0c @23#.
From a thermodynamic point of view these results sim
reflect the fact that, for any system size practically access
to computer-simulation, the ‘‘critical’’ contribution to the ca
nonical specific heat is not large enough to dominate
‘‘noncritical background.’’ But the argument also shows
how to eliminate the effects of this background from t
energy pdf.

Consider the cumulant representation@22# of the scaling
energy pdf@Eq. ~17!# at criticality:

P̃~xuy50!5
1

2pE2`

`

dteixt F (
n51

`
~2 i t!n

n!
x̃n~y50!G .

~31!

The corresponding relation for theobservedenergy pdf at
criticality, written in its inverse form, is

expF (
n51

`
~2 i t!n

n!
x(n)~y50,L !G

5E
2`

`

dx8e2 ix8tP~x8uy50,L !. ~32!

Appealing to the our conclusion that, for large enoughL, the
cumulants of the two pdf’s differ significantly only in th
n52 case, and using Eqs.~27! and ~28!, we find that

P̃~xuy50!5
1

2pE2`

`

dtE
2`

`

dx8ei (x2x8)t2g(L)t2/2

3P~x8uy50,L !

5
1

A2pg~L !
E

2`

`

dx8e2(x2x8)2/[2g(L)]

3P~x8uy50,L !. ~33!
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This result shows that thescaling form of the critical pdf
may be exposed byconvolutionof the observed~and thus,
generally, nonscaling! pdf’s with Gaussians whose width
are controlled by the specific heat background. Note that
argument rests on the fact that this background is nega
@so thatg(L) as defined in Eq.~28! is positive#. If the back-
ground constant were positive our argument would have
be restructured to prescribe the scaling form by a proces
deconvolution, which is numerically problematic. As it is
the convolution process can be implemented easily. Withc0c
fixed by the ordinate intercept in Fig. 2, the pdf’s measu
on different system sizes can each be corrected in this wa
yield estimates of the scaling pdf. The results are shown
Fig. 4. The improvement with respect to the raw data~Fig. 3!
is striking. This improvement reflects not only the remov
of the nonscaling contribution to the second cumulant
also that the requisite convolution process provides anatural
smoothing of the MC data@28#. The consequences of th
correction for theshapeof the distribution are also striking
The skewness@29# clearly visible in the raw distributions
~Fig. 3! is largely suppressed to expose a scaling form tha
at first appearance, Gaussian. Indeed the portion of the
tribution evident on the scale of Fig. 4 is Gaussian to with
deviations of a few percent. However the behavior in
wings ~evident on the logarithmic scale utilized in Fig. 5! is
markedly different on the high and low-energy sides.

FIG. 4. The data of Fig. 3 with the effects of the nonscali
background convoluted out as prescribed by Eq.~33!.

FIG. 5. The finite-size scaling function for the ‘‘effective’’ mi

crocanonical entropyS̃eff(x) defined by Eq.~34! and deduced from
the critical canonical energy pdf, with the aid of Eq.~35!. Multihis-
togram methods@27# have been used to allow access to an exten
range ofx values.
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The scaling of the critical energy pdf corroborates t
scaling of the microcanonical entropy@cf. Eq. ~17!#. Given
the double appearance ofS̃(x) in Eq. ~17!, it is practical to
infer only the ‘‘effective’’ microcanonical entropy scalin
function

S̃eff~x![S̃~x!1
1

2
lnF2S̃9~x!

2p
G . ~34!

Figure 5 shows the form implied by Eq.~17!:

S̃eff~x!5S̃eff~x50!1 lnF P̃~xuy50!

P̃~x50uy50!
G . ~35!

We note as a matter of empirical fact thatS̃eff(x) is concave.
The concavity ofS̃(x) itself is already assumed in our bas
scaling ansatz@15#.

IV. SCALING THEORY: IMPLICATIONS AND TESTS

Although we have no first-principles calculation of th
scaling functionS̃(x) to offer here, we can identify, and tes
some of the properties it must have to match anticipa
behavior in both the thermodynamic and finite-size-critic
limits. We consider, in particular, the limiting largeuxu be-
havior. In this regime we anticipate that

S̃~x!.2b6uxuu1r 6 ~ uxu@1!, ~36!

where the1 and 2 subscripts refer, respectively, to th
regions of positive and negativex. To make explicit identi-
fications of the new quantities introduced in this equat
~the exponentu and the amplitudesb6 andr 6), consider the
scaling part of the partition function@Eq. ~11!#. In the limit
of large uyu the integral in Eq.~11! is dominated by one or
other of the largeuxu regimes. Substituting Eq.~36!, a saddle-
point integration yields

ln Z̃~y!.a6uyuu/(u21)1r 6 ~ uyu@1!, ~37!

where the1 and2 subscripts now refer, respectively, to th
regions ofnegativeandpositive y@30#, and

a1

a2
5S b2

b1
D 1/(u21)

. ~38!

As in the argument leading to Eq.~3! the fluctuations abou
the saddle point are canceled by the pre-exponential facto
Eq. ~11! to leave power-law~‘‘ln-free’’ ! behavior@31#.

The thermodynamic limit of the near-critical free energ
defined by Eq.~14!, now follows as

F̃~b,L !.Ld@ f 0~b!2A6ub2bcu22a#2r 6 , ~39!

where we have identified

u5
22a

12a
~40!

and @given Eq.~38!#
d
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A1

A2
5

a1

a2
5S b2

b1
D 12a

. ~41!

To establish the role of the remaining constants (r 6) in
Eq. ~36! we consider the anomalous contribution to the fr
energy@14# defined by

Fa~b![ lim
L→`

H F̃~b,L !2Ld lim
L→`

F̃~b,L !

Ld J . ~42!

Appealing to Eq.~39!, and recalling our sign conventio
@30#, we identify

Fa~b!5H 2r 1 ~b,bc!

2r 2 ~b.bc!
. ~43!

On the basis of rather general arguments@10#, we expect that
away from a critical point the free energy anomaly is ju
minus the logarithm of the number of coexisting phases
that

r 152Fa~b,bc!50, ~44a!

r 252Fa~b.bc!5 ln 2. ~44b!

In the critical finite-size limit we find from Eq.~14!

F̃~bc ,L !5Ldf 0~bc!2 ln Z̃~0!. ~45!

The critical value of the free energy anomaly, defining t
Privman-Fisher constantU0 @14#, follows as

U0[Fa~bc!52 ln Z̃~0!. ~46!

These predictions are testable to varying degrees thro
both the energy dependence of the energy pdf and the
perature dependence of the associated free energy.

Figure 6 shows the results for the ratio of the specific h
amplitudes that follow from Eq.~41! when the measured
decay of the critical energy pdf~Figs. 4 and 5! is matched to
the prediction~36!, in conjunction with Eq.~17!. We can
expect the predictions and observations to match up only

FIG. 6. Estimates of the specific heat amplitude ratio, dedu
from the decay of the energy pdf~for different system sizes! at
‘‘large’’ ~positive and negative! x values. The estimates were dete
mined by fitting to pairs of ranges ofx values, with the ranges
forming each pair being centered on a common value ofL/j, which
forms the abscissa.
e

o

gh
m-

t

a

window of x values. Clearly,x must be large enough to lie
within the thermodynamic critical region; but it must also n
be so large that the associated energy lies outside the do
of validity of the basic scaling ansatz@Eq. ~8b!#. Thesizeof
this window should increase with increasing system si
The location of this window on thex axis may also be ex-
pected to be different for the positive and negativex
branches—if, as seems reasonable, one regards thecorrela-
tion lengthj ~rather thanx;e2ec or y;b2bc) as a mea-
sure of criticality. This is, indeed, the view we have adopt
@33#. Thus Fig. 6 shows the results for the effective amp
tude ratio, obtained by fitting over ranges ofx values, with
each pair~of positive and negative ranges! being centered on
the same value ofz5L/j, used as the abscissa@32#. On the
basis of this data@34# we make the assignmentA1 /A2

50.575(10) which is to be compared withA1 /A2

50.523(9) in Ref.@13# and 0.567(16) in Ref.@25#.
In Fig. 7 we show the results for lnZ̃(y) that follow @cf.

Eqs. ~11!, ~34!, and ~35!# from the measured energy pdf’s
using Eq.~35!. The latter determinesS̃eff(x) only to within
an additive constant which must be fixed by appeal to
predicted value of eitherr 1 or r 2 . We have chosen the
latter so that Eq.~44b! is satisfied, byfiat. The motivation for
this choice is that it provides us with an inherently mo
reliable estimate of the parameterU0 ~which, unlike r 6 , is
not known a priori!. Since2U05 ln Z̃(0) is closer tor 2

than tor 1 the function lnZ̃(y) converges more quickly to its
y.0 asymptote than it does to itsy,0 asymptote. Fixing
r 2 ~the intercept of they.0 asymptote! thus tethers the
value assigned toU0 more effectively than fixingr 1 . As
with the amplitude ratio considered above, the value
signed toU0 depends upon the range ofy values used in the
fit to the anticipated asymptotic form@Eq. ~37!#. Again we
have chosen to characterize the temperature range uti
through the value of the ratioz5L/j; again we can expec
the analysis to be trustworthy only if it is based upon d
lying within the thermodynamic-critical window. Our dat
~Fig. 8! do not allow a systematic analysis of the approach
the desired limit, but they provide the basis for the assi
mentU0520.57(2)@34#. The assignment of the uncertain

d
FIG. 7. The function lnZ̃(y) defined in Eq.~11!, deduced from

the microcanonical entropy~Fig. 5!. The dimensionless variabley
provides a scaled representation of the reduced~inverse! tempera-
ture @Eq. ~12!#. The straight lines represent fits to the predict
asymptotic forms@Eq. ~37!#. The arrows identify the roles of the
parametersr 6 @Eqs.~44a!, and~44b!# andU0 @Eq. ~46!#.
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limit is subjective but, we think, conservative. We note t
close correspondence with the assignment (U0520.57)
emerging from an earlier study@36#, similar in concept, but
utilizing the distribution of the order parameter. However o
assignment differs~in what would seem to be a statistical
significant fashion! from the resultU0520.625(5) obtained
by Mon @35# on the basis of altogether different technique

V. MICROCANONICAL AND CANONICAL SPECIFIC
HEATS

A. Generalities

Thus far we have focused on the implications of themi-
crocanonicalentropy for observations made in thecanonical
ensemble. We now turn to a consideration of their implic
tions for observations made within ensembles that are~or are
approximations to! microcanonical.

We will assume~in keeping with e.g., Refs.@2,8#! that the
temperature of a microcanonical system should be identi
from the relation

bme~e,L !5L2d
] ln V~e,L !

]e
. ~47!

This identification is certainly required in the thermodynam
limit; but in the context of systems of finite size it is,
seems, a matter of convention@37#.

It is illuminating to link this temperature withcanonical
observables. Appealing to Eq.~15! we may write

bme~e,L !5b1L2d
] ln P~eub,L !

]e
, ~48!

where ~notwithstanding appearances to the contrary! the
right-hand side depends one but not b. This result shows
that the equation prescribing the microcanonical tempera
for a given energy is just the inverse of the equation presc
ing themost probable energyfor a given temperature:

b5bme~e,L !⇔e5 êce~b,L ! ~49!

By comparison, within the canonical ensemble itself, the
ergy for a given temperature is customarily identified w
the canonicalmean

FIG. 8. Estimates ofU0 @Eq. ~46!#, determined, as in Fig. 6, fo
a sequence of different ranges ofL/j values; the midpoint of the
range defines the abscissa.
r

.
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d

re
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-

e5 ēce~b,L !. ~50!

Equations~49! and ~50! make it immediately plain that the
energy-temperature relationships associated with the two
sembles will coincide to the extent that the canonical ene
distribution isGaussian~and thus has coincident meanēce

and modeêce). This correspondence is guaranteed in t
thermodynamic limit, but not~in general! when finite-size
effects are significant.

The energy-temperature relationships are most usu
probed through their derivatives, the associated spec
heats. In the microcanonical case

cme~e,L !52F]bme~e,L !

]e G21

52LdF ]2 ln P~eub,L !

]e2 G21

,

~51!

where, again, theb dependence of the rhs is illusory.
In the canonical case@appealing to Eq.~18!#,

cce~b,L !52
]ēce~b,L !

]b
5Lde (2)~b,L !. ~52!

Like the two ‘‘caloric equations of state’’@Eqs. ~49! and
~50!# these two specific heats are guaranteed to agree in
thermodynamic limit, but they differ~in general! in the
finite-size critical regime to which we now turn.

B. Scaling forms

First we examine the asymptotic scaling regime where
the background contribution to the specific heat can be
glected. We will consider the consequences of the corr
tions associated with the latter in Sec. V C.

In the scaling regime where the canonical energy pdf m
be represented by its scaling form@Eqs. ~16! and ~17!#, Eq.
~48! can be rewritten in terms of the energy and temperat
scaling variables@Eqs.~6! and ~12!# as

yme~x!5y1
] ln P̃~xuy!

]x
5

]S̃eff~x!

]x
, ~53!

where in the last step we have exercised the right to sey
50 ~the result is independent ofy) and have made use o
Eqs. ~17! and ~34!. The microcanonical specific heat@Eq.
~51!# follows in scaling form,

cme~e,L !.La/nae
22c̃me~x!, ~54a!

with

c̃me~x!52F ]2ln P̃~xuy50!

]x2 G21

52F ]2S̃eff~x!

]x2 G21

.

~54b!

The scaling form of the canonical specific heat follows in
similar fashion, using Eqs.~19! and ~52!,

cce~b,L !.La/nae
22c̃ce~y!, ~55a!

with ~Eq. 22!:
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c̃ce~y!5 x̃(2)~y!. ~55b!

The forms of both the scaling functionsc̃me(x) andc̃ce(y)
can be determined from the scaling form for the micro
nonical entropy~Fig. 5! or, equivalently, the critical canoni
cal energy pdf~Fig. 4!, established in Sec. V A. They ar
compared in Fig. 9. In the microcanonical case we have u
Eq. ~53! to identify the microcanonical temperaturey
5yme(x) to be associated with a given value of the ene
variablex.

In the thermodynamic limit realised at large values ofuyu
the two functions are, necessarily, consistent with one
other, and approach the asymptotic behavior implied by
~39!. In the finite-size-critical~small uyu) regime, however,
clear differences between the two scaling forms are appa
In particular, the microcanonical maximum exceeds the
nonical maximum by some 10%. One can show~Appendix
C! that this—the fact that the microcanonical maximum
the larger one—follows necessarily if the scaling functi
S̃(x) is concave.

The two scaling functions cross very close to the po
(y50) identifying the bulk critical temperature. One can s
this already in published microcanonical data@8#; a similar
‘‘ensemble independence’’ has also been noted in studie
the ‘‘Gaussian ensemble’’@38#. We have been unable to se
any deep reason for this correspondence, but we do not
count the possibility that there is one.

Though clearly visible, the differences between the t
scaling functions are smaller than suggested by existing
data@8#. Sec. V C explains why.

C. Beyond scaling: The role of the ‘‘background’’

To understand the behavior observed in MC studies
microcanonical behavior, we must allow for the correctio
to scaling which, in the canonical ensemble, are reflec
simply in the existence of the additive negative backgrou
contribution to the heat capacity; their signature in the m
crocanonical ensemble is more subtle.

The differences between the canonical and microcan
cal results is effectively a strongly anharmonic effect: in

FIG. 9. Comparison of the dimensionless microcanonical

canonical specific heat scaling functions,c̃me @Eq. ~54a!# and c̃ce

@Eq. ~55a!#, plotted as a function of the scaled dimensionless te
perature@Eq ~12!#. The light dashed line shows the power-law b
havior characterizing the thermodynamic~largeuyu) limit, extended
back into the finite-size-limited region.
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system of finite size, critical fluctuations sample a region
the entropy surface sufficiently large that the variation of
curvature becomes significant. We can expose the co
quences analytically within an anharmonic perturbat
theory in the cumulants of the energy pdf. The calculation
straightforward, and we describe it in outline only.

We appeal to the cumulant representation of the ene
pdf at some~general! temperature

P~eub,L !5
1

2pE2`

`

dtei et expF (
n51

`
~2 i t!n

n!
e (n)~b,L !G .

~56!

We expand perturbatively to first order in the fourth cum
lant and to second order in the third. We evaluate the sec
derivative of the logarithm of this function, which dete
mines@cf. Eq. ~51!# the microcanonical specific heat asso
ated with a given energy density. We evaluate this funct
at the modal energyê5 ê(b,L) associated with the chose
temperature, prescribed by the~perturbative! solution of the
microcanonical caloric equation of state@Eq. ~48!#. The re-
sult is

cme~ ê,L !5cce~b,L !

3H 12
e (4)~b,L !e (2)~b,L !2@e (3)~b,L !#2

2@e (2)~b,L !#3

1•••J . ~57!

Equation~18! shows that the cumulant correction term
displayed in this equation areO(L2d) in the thermodynamic
limit, confirming the equality of microcanonical and canon
cal predictions in this limit. To see what happens in t
finite-size-critical region we focus~for simplicity! on the
temperaturebm for which the canonical specific heat
maximal, identified by the solution of

e (3)~b,L !505
dcce~b,L !

db
. ~58!

At this temperature Eq.~57! simplifies to

cme~ êm ,L !5cce~bm ,L !2
Lde (4)~bm ,L !

2e (2)~bm ,L !
1•••, ~59!

where êm5 ê(bm ,L), and we have used Eq.~52!. Now we
appeal to the scaling forms for the cumulants@Eq. ~19!#, and
fold in the effects of the additional nonscaling contribution
the second cumulant@Eq. ~28!# to conclude that

cme~ êm ,L !5cce~bm ,L !2
La/nae

22x̃(4)~ym!

2@ x̃(2)~ym!2g~L !#
1•••.

~60!

This result makes clear~albeit perturbatively! that, in the
finite-size-limited regime, the temperature-independent ad
tive background constant in the canonical specific h

d
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@manifested in the parameterg(L)# does not simply translate
into an additive energy-independent background in its mic
canonical counterpart.

To expose the implications for the difference between
nonical and microcanonical specific heats we introduce
dimensionless parameter

R~L ![
cme~ êm ,L !2cce~bm ,L !

cce~bm ,L !
52

x̃(4)~ym!

2@ x̃(2)~ym!2g~L !#2

1•••. ~61!

Then

R~L !

R~`!
5F x̃(2)~ym!

x̃(2)~ym!2g~L !
G 2

5F12
c0c

cce~bm ,L !
G 2

, ~62!

whereR(`) is the scaling limit ofR(L).
The significance of the background constantc0c—in par-

ticular, itssign—is now apparent. Thenegativevalue of this
constant results in anamplificationof the difference between
the microcanonical and canonical results~at bm), to a degree
that diminishes with increasing system size. This is not s
ply the trivial effect that would arise from a uniform~down-
ward! shift of both functions: Eq.~60! shows that this is no
what happens, as does the power of 2 on the right-hand
of Eq. ~62!.

It is not hard to track down the origins of this effect. Th
difference between the canonical and microcanonical spe
heats is, we have noted, an anharmonic effect; in the pre
context the corrections to scalingreduce~only! the second
cumulant of the energy pdf and thus, in a relative sen
enhancethe anharmonic~non-Gaussian! character of the en
ergy pdf, as one can see immediately from a compariso
Figs. 3 and 4.

The effect is significant. ForL510 ~as used in the simu
lations reported in Ref.@8#!, estimating cce(bm ,L) by
cce(bc ,L) one can read off from Fig. 2 thatR(L)/R(`)
;4. The somewhat unexpected conclusion that the fractio
difference betweencce and cme at bulk criticality actually
decreasesfor increasingL is consistent with some MC stud
ies @39#.

VI. CONCLUSIONS

We review, briefly, the three principal strands of th
work.

First, we have broached the general question of the fin
size corrections to the density of states of a many-body
tem. The explicit proposal for the pre-exponential struct
advanced in Eq.~2! is consistent with the pre-factor-fre
structure of the canonical partition function@10# and with the
behavior of the simple models discussed in Appendix
Given the growing interest in the behavior of mesoscopica
sized systems, this proposal seems to merit some fur
study, with more rigor than we have attempted to offer he

Second, we have shown how one can fold out from
canonical energy fluctuation spectrum the principal corr
tions to scaling. The underlying behavior exhibits scale
variance to a degree that seems remarkable, given the
tive weakness of energy fluctuations. It is, we have seen,
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largely consistent with established 3d Ising critical proper-
ties.

Third, we have provided a finite-size scaling theory of t
microcanonical ensemble. This was the original motivat
for this work—specifically, the suggestion@8# that the finite-
size smearing of critical behavior characteristic of the
nonical ensemble is greatly reduced within the microcano
cal framework. Reference@8# offers two pieces of supporting
evidence for this contention, which merit final comment.

Reference@8# suggests, first, that, in the vicinity ofec , the
microcanonical entropy~measured with the techniques d
scribed in Ref.@40#! can be adequately represented by a fo
†Eq. ~6! of Ref. @8#‡ which allows forno finite-size correc-
tions at all, and which corresponds essentially to the largx
limit @Eq. ~36!# of our scaling function. In fact the quality o
the fit provided by this representation is rather poor, and
would expect it to be so. The measured microcanonical
tropy evolves in amanifestly smoothway @41# between the
limiting thermodynamic forms appropriate above and bel
ec ; Eq. ~6! of Ref. @8# is non-analytic atec . Moreover, in
analyzing data for the entropy and its derivatives, it is —
have seen — essential~on all systems practically accessibl!
to do justice to the corrections associated with the ba
ground constantc0c . Even in the thermodynamic limit the
corrections allowed for in Eq.~8! of Ref. @8# do not do this.

The second piece of supporting evidence offered in re
ence@8# is a striking enhancement of the critical peak in t
microcanonical specific heat, with respect to its canoni
counterpart. As we have seen, this behavior is at least pa
due @42# to the effects associated withc0c ; Fig. 9 indicates
that the underlying differences are rather less dramatic.
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APPENDIX A: DEFINING A DENSITY OF STATES

Here we discuss, in general terms, the issues arisin
defininga density of states function for a system in which t
energy spectrum is discrete. The conventional argument@43#
makes the identification

V~e,L !de5 (
E,Es,E1dE

Vs , ~A1!

with the implicit assumption that the right-hand side is pr
portional todE([Ldde). This requires the following condi-
tions.

Condition 1: There exist many distinct levelss within the
interval dE.

Condition 2: The level degeneracyVs is slowly varying
over the intervalE→E1dE.

The fractional variation ofVs over the intervaldE can be
estimated using Eq.~47!; condition~2! can then be expresse
in the form

d ln V~e,L !

de
de5bme~e,L !dE!1. ~A2!

Taken together, conditions~1! and ~2! thus amount to the
requirement that
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dEI!
1

bme~e,L !
, ~A3!

wheredEI characterizes the intrinsic discreteness of the
ergy spectrum. This condition is trivially satisfied in the cla
sical limit ~Appendix B 1 considers one case explicitly!. But
there are obvious exceptions: in the Ising model~Appendix
B 2! Eq. ~A3! is satisfied only at energies corresponding
microcanonical temperatures that are ‘‘high’’ on the scale
the critical temperature. Or, to put it another way,Vs is
certainly not slowly varying over a range wide enough
embrace many system energy levels. We must now rec
nize, however, that Eq.~A1! ~along with its implicit assump-
tions! does not faithfully reflect the conditions needed
legitimize the transition from discrete@Eq. ~1a!# to con-
tinuum @Eq. ~1b!# representations. Instead of Eq.~A1! we
require, rather, that we can consistently write

V~e,L !e2bEde5 (
E,Es,E1dE

Vse
2bEs, ~A4!

where@while retaining condition~1!# we must replace con
dition ~2! by Condition 2A:Vse

2bEs is slowly varying over
the intervalE→E1dE, if that interval lies in a range con
tributing significantly to the thermal properties at tempe
ture b. The rangecontributing significantly. . . is centered
on the saddle pointÊ5Ldê @Eq. ~5!#. As a result, while
condition~2! requires Eq.~A2!, condition~2A! requires only
that

d2 ln V~e,L !

de2
de25L2d@cme~e,L !#21dE2!1, ~A5!

where we have used Eq.~51!. Thus, in place of Eq.~A3!, we
need simply

dEI!@Ldcme~e,L !#1/2.Ld@e (2)~bme,L !#1/2, ~A6!

where the last step uses Eq.~52!, andbme5bme(e,L) @Eq.
~47!#. This equation expresses more explicitly the implic
tions of condition~2A!. A density of states function will
exist in the operational sense@Eq. ~1b!# that it may be used to
compute thermal properties at a given temperature as lon
the canonical energy distribution~for that temperature! is
broad on the scale of the intrinsic discreteness of the en
spectrum.

APPENDIX B: DENSITY OF STATES
OF SIMPLE MODELS

Here we show that the general form for the density
states function proposed in Eq.~2! is consistent with exac
results for two simple models.

1. Quasicontinuous energy spectrum: harmonic lattice model

Consider a system~a harmonic model of the vibrations o
a crystal structure, for example! whose energy spectrum i
that ofN weakly-interacting harmonic oscillators, with ass
ciated frequenciesn j , j 51•••N. Then
-
-

f

g-

-

-

as

gy

f

E~$n%!5h(
j 51

N

njn j[(
j 51

N

e j

gives the energy of a microstate in which~for eachj ) mode
j has quantum numbernj . We consider the classical (h
→0) limit, in which the energy levels are quasicontinuou
In this casedEI;hnmin , Eq. ~A3! is satisfied, and we may
proceed as in Eq.~A1! to write

V~e,N!5
1

de (
$n%

D„E~$n%!2Ne…,

where

D~X!5H 1 if 0,X,Nde

0 otherwise,

while e[E/N is the energy per oscillator. In theh→0 limit
the sums onnj can be replaced by integrals one j to give

V~e,N!5e21ENQ~N!I ~N!,

where

I ~N!5)
j 51

N E
0

1

dxjdS 12(
j

xj D
and

Q~N!5)
j 51

N
1

hn j
.

Writing an integral representation of thed function we find
@44#

I ~N!5
1

2pE2`

1`

dhe2 ihFeih21

ih GN

5
2

pE0

`

dh cos@~N22!h#

3Fsinh

h GN

5
1

G~N!
,

which may be approximated using the asymptotic expans
for the G function @44#:

G~z!5A2pzz2(1/2)e2z@11O~z21!#. ~B1!

In analyzing the remaining~energy-independent! contri-
bution we suppose that the frequency spectrum is that
d51 system of particles, with a gap. Then

ln Q~N!52N ln h2NqN ,

where the sumqN may be written in the form

qN5
1

N (
j 51

N

ln n j5
1

N (
r 50

N21

HS 2pr

N D ,

where H(u) is periodic, and~invoking the assumed gap!
H(0) is nonzero. It can be shown@45# that theN→` limit of
this sum,
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q`5
1

2pE0

2p

H~u!du,

has finite-size corrections that are exponentially small in
Gathering these results together we conclude that the

sity of states has the form of Eq.~2! with the identifications
N5Ld and

s~e!5 lnF e

hG2q`11. ~B2!

Appealing to Eq.~3! one can readily recover, as a check, t
canonical partition function

Z~b,N!5~bh!2Ne2Nq`.

2. Discrete energy spectrum: 1d Ising model

Consider ad51 Ising model ofN sites, with periodic
boundary conditions. Choosing the ground state as the
ergy zero, the energy density for a macrostate ofM domain
walls ise5Me I /N, wheree I is the domain wall energy. The
number of microstates corresponding to macrostateM ,N is

VM ,N5
23N!

~N2M !! M !
.

Appealing to the asymptotic form~B1! once more, we find
that

VM ,N52A N

2p
@x~12x!#21/2x2Nx~12x!2N(12x)

3@11O~N21!#,

wherex[M /N5e/e I . In this casedEI5e I , and Eq.~A3! is
not in general satisfied. But, since Eq.~A6! is satisfied, we
may still identify a density of states by

V~e,N!5
1

2e I
VM ,N ,

which one may then readily recast in the form of Eq.~2! with
the identificationsN5Ld and

s~e!52~12x!ln~12x!2x ln x. ~B3!

Again, as a check, one can readily use this result to reco
the canonical free energy density in the form

f ~b,N!52
1

N
ln Z~b,N!52 ln~2 coshK !1K,

where 2K5be I , and the last term reflects our choice
ground state energy.

APPENDIX C: A BOUND ON THE CANONICAL SPECIFIC
HEAT

Here we outline an argument establishing that the ma
mum of the value of the microcanonical specific heat p
.
n-

n-

er

i-
-

vides an upper bound for the canonical specific heat, wit
the asymptotic scaling region. The argumentassumesthe
concavity of the functionS̃eff(x); the concavity ofS̃(x) is
already presupposed in the formulation of Eq.~2!.

We write the scaling function for the energy pdf@Eq.
~17!# in the form:

P̃~xuy!5Q~x,y!G„x2 x̂~y!,21/S̃eff9 ~x!!…, ~C1!

whereG(z,b) is a Gaussian of zero mean, and varianceb;
x̂(y) is the modal scaled energy, for a giveny, the solution of

dS̃eff~x!

dx
5y, ~C2!

andx! locates the maximum of the microcanonical spec
heat, identified by the condition@Eq. ~54b!#

S̃eff9 ~x!<S̃eff9 ~x!!. ~C3!

The functionQ(x,y) introduced in Eq.~C1! is defined by

Q~x,y!5Q0eT(x,y), ~C4!

where

T~x,y!52xy1S̃eff~x!2
S̃eff9 ~x!!

2
„x2 x̂~y!…2, ~C5!

while Q0 is an x-independent constant, defined by norm
ization. From the assumed concavity ofS̃eff(x) it is straight-
forward to show that, for any giveny, T(x,y) is concave in
x, with a single maximum atx5 x̂(y).

Now appealing to Eqs.~C1! and ~55b!, we can write

c̃ce~y!5 x̃(2)~y! ~C6!

5E dxP̃~xuy!@x2 x̃(1)~y!#2

<E dxP̃~xuy!@x2 x̂~y!#2

5E dzQ„x̂~y!1z,y…G„z,21/S̃eff9 ~x!!…z2

5E dzQ̃~z,y!G„z,21/S̃eff9 ~x!!…z2, ~C7!

where

Q̃~z,y!5
1

2
@Q„x̂~y!1z,y…1Q„x̂~y!2z,y…#

5
Q0

2
@eT„x̂(y)1z,y…1eT„x̂(y)2z,y…#. ~C8!



ol-

PRE 60 3759CRITICAL-POINT FINITE-SIZE SCALING IN THE . . .
From the properties of the functionT(x,y) it is straight-
forward to show thatQ̃(z,y) has a single turning point~at
z50), and that there exists somez0(y) such that

Q̃~z,y!H .1 if uzu,z0~y!

,1 if uzu.z0~y!.
~C9!

Then, finally, appealing to Eqs.~C7! and ~54b!,
l.

-
n;

.
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s
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e
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a

c̃ce~y!2 c̃me~x!!,E dz@Q̃~z,y!21#G„z,21/S̃eff9 ~x!!…z2

,z0
2~y!E dz@Q̃~z,y!21#G„z,21/S̃eff9 ~x!!…

50, ~C10!

where the last step exploits normalization conditions. It f
lows that the microcanonical specific heat maximumc̃me(x!)
provides an upper bound for the canonical specific heat.
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