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Critical-point finite-size scaling in the microcanonical ensemble
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We develop a scaling theory for the finite-size critical behavior of the microcanonical er(depgity of
state$ of a system with a critically divergent heat capacity. The link between the microcanonical entropy and
the canonical energy distribution is exploited to establish the former, and corroborate its predicted scaling
form, in the case of the®Ising universality class. We show that the scaling behavior emerges clearly when
one accounts for the effects of the negative background constant contribution to the canonical critical specific
heat. We show that this same constant plays a significant role in determining the observed differences between
the canonical and microcanonical specific heats of systems of finite size, in the critical region.
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I. INTRODUCTION need to appedSec. Il) to Monte Carlo(MC) measurements
of the criticalcanonicalenergy probability distributiofpdf).
Statistical mechanics can be formulated in any of a set of The canonical energy pdf itself has a near-critical finite-
ensembles distinguished by the relationship between the sysize-scaling form which was featured in a number of studies
tem and its environmentl]. The principal members of this of critical points in fluidd11] and lattice gauge theorig$2].
set are the microcanonicgrescribed energyand canonical Since energy fluctuationfike the critical anomaly in the
(prescribed temperatureensembles. In the thermodynamic canonical specific heat which they conjralre relatively
limit (when it exist$ the ensembles yield the same predic-weak (by comparison with the fluctuations of the order pa-
tions (and are, in this sense, equivalerdnd the choice of rameter, and the divergence of its response fungtioa de-
ensemble is a matter of practical convenience. The canonicgree of “scaling” reported in previously measured energy
ensemble tends to win this contest because it circumnav'bdfs has been relatively poor—unsatisfactorily so for our
gates the hard-constant-energy constraint imposed by the Miyrposes here. This problem is addressed in Sec. lll. We
crocanonical ensemble. _ show that one can fold ofrom the measured distributions
The two ensembles are, however, not always equivalenf,e s pdominantbut significant nonscaling effects that are
[2]. Th(_éy differ for systems which are “small” in Some ,sqqciated with the constant background contribution to the
zentse. mhe.trke]ntly small s;&stlems_such a? nuclei ok: C|L[$;§]3I‘S canonical heat capacitpegativein the case of the @ Ising
ystems with unscreened long ra'm.ge orpéf where © model[13]. This procedure exposes the underlying behavior,
thermodynamic limit is problematic; and systems at critical . . ) . : .
which manifests scaling to an impressive degree. In addition

points[5], which are our principal concern here. - . i X
Theoretical studies of critical phenomena are almost ini© Providing us with the platform needed for this work, this

variably conducted within the framework of the canonicalProcedure may offer the basis for improving the mixed-
ensemble[6]. As a consequence there is no substantivescaling-field theory{11] of critical points in systems that
framework within which to interpret computational studies P€long to the Ising universality class but which do not have
of microcanonical critical behavior. Such studies do, neverfull Ising symmetry; recent studigd 2] have suggested that
theless, exist, having been motivated, variously, by the beliefhe current framework is not fully satisfactory.
that the microcanonical framework may have some compu- The scaling form for the critical energy pdf allows us to
tational advantagel¥’] and by the discoverj8] that, appar- determine the scaling form of the microcanonical entropy. In
ently, critical anomalies in the microcanonical heat capacitySec. IV we explore this form, and show that it is consistent
are significantly enhanced with respect to their canonicalith predictions for both the bulk-critical limias regards
counterparts. the parameters characterizing the specific heat singularity
This paper goes some way toward supplying the missing13]) and the finite-size critical limit(the Fisher-Privman
framework. We develogSec. 1) a finite-size-scaling theory constan{14]).
[9] for the microcanonical entropihe density of stateof a The microcanonical entropy also provides us with a uni-
system with a critically divergent heat capacity. In so doingfied basis for dealing with both the canonical and the micro-
we have, of necessity, to consider more general questiornsanonical specific heatSec. \). We show that the “correc-
about the structure of the density of states of a finite-sizd¢ions” to the scaling behavior of the canonical specific heat
system —in particular the implications of well-established(the negative background constanthave subtle conse-
results for the finite-size structure of the canonical partitionquences for the microcanonical behavior. In particular they
function[10]. serve toamplify the difference between microcanonical and
Though somewhat more than a phenomenology, oucanonical behavior, and are at least partially responsible for
theory falls short of being microscopically explicit: to deter- the strength of the anomaly observed in some microcanoni-
mine an explicit form for the relevant scaling function we cal studieq8].
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Il. MICROCANONICAL SCALING ANSATZ The argument we have given leaves open the possibility
of power-law corrections to Eq3). It has long been be-
lieved, and more recently established rather genefaldy,
that the corrections to the leading form are actuaktponen-
tially small in the system size. Since the saddle-point inte-
gration necessarily generates power-law corrections, one
must suppose that there are compensating power-law correc-
tions to the ansatfEq. (2)] for the density of states. This
Z(,B,L)=E efﬁEr=z Qe s, (1a conclusion serves as a warnifiglready suggested by the
' s double appearance of the functiste) in Eq. (2)] that the
microcanonical framework faces problems which are skirted
ri]n the canonical formalisml17].
Now, more specifically, consider a system, of the kind
specified above, in the vicinity of a critical point. We will
s suppose that the critical point has a divergent heat capacity;
Z(B,L)=f deQ(e,L)e Pte, (1b) where we need to be more specific we shall assume it is a
member of thed=3 Ising universality clasgor, more spe-
wheree=E/L? is the energy density. The functida(e,L)  cially still, thed=3 Ising model itself. Within the microca-
is the density of statesas we have defined it, it is a true nonical framework the critical point of such a system is lo-
density, having dimensions of inverse energy. We note thagated by a critical value; of the energy density, sharply
the transition from the discrete representaﬁﬁq_ (13)] to its defined in the thermOdynamiC limit. We are concerned with
continuum counterpafEq. (1b)] requires some care: this is the behavior of the microcanonical entropy for energies in
discussed in Appendix A. the vicinity of this critical value. To describe this regime we
Our microcanonical scaling theory comprises a proposaintroduce the dimensionless scaling varialig]
for the form of the density of states function. We formulate it 1
in two stages. Consider first a regime remote from critical x=al (e e), 6)

points or lines of phase coexistence. In such a regime Wgnere a, is an appropriate scale factor, and the index is

We consider a-dimensional many-body system of linear
dimensionL; we assume hypercubic geometry with periodic
boundary conditions. The canonical partition function is, in
principle, a discrete sum over system microstdte®r sys-
tem energy levelsy),

where(), is the degeneracy of level We shall suppose that
the system is sufficiently large that the sum over levels ca
be replaced by an integral

make the general finite-size anstsb] defined by
_ LdS”(E) 1/2 Ldg 1 1—
O (€) o
Qe l)=|—5— e- =9, 2 —= : (7)

The structure proposed for the prefactor makes this a littlgyith o the index(assumed positivecharacterizing the heat
more than simply alefinitionof the microcanonical entropy  capacity divergence, andthe correlation length indeix.9)].
density s(e). In its support we note, first, that one may \we now reformulate and extend our basic ang&g. (2)]

readily verify it explicitly (Appendix B in the case of some yith the proposal that, in a region of sufficiently largend
simple model systems. Second, we note the implications fogtficiently small|e— €| [20],

the associated canonical partition function. Inserting 4.

into Eq. (1b), a saddle-point integration gives —L9s"(e,L)]*2
Q(eL)= “Lstel) et'stel), (8a)
d112 , 2
. N 1/2,L"[s(€) — Be]
Z(B,L) ZW} | aer-sren=e .
=e LB[1+O(L Y], 3) L%(e,L)=Lsc+Bele—€)]+8(x). (8D
where Heres; is an unimportant constang, is the critical inverse
R R temperature, and(x) is a finite-size-scaling function, uni-
f(B)=Be—s(e), (4)  versal given some convention on the scale faetor intro-
duced in Eq.6). The remainder of this paper is devoted to
and e is the solution of providing support for this proposal, and exploring the struc-
ture of the microcanonical entropy scaling function which it
B=s'(¢). (5)  introduces.
Equation(3) recovers the prefactor-free form of the canoni- IIl. DETERMINING THE SCALING FUNCTION

cal partition function believed to be widely appropriate in

regions (those where the saddle point integration is to be It should be possible to determine the finite-size-scaling
trusted remote from critical points or lines of phase coexist- function S(x) within the renormalization group framework
ence[10]. We note that this form is achieved by virtue of the [21]. We have not done that. Instead we have chosen to learn
prefactor thatloesappear in the density of states and&g.  what we can about this function from its signatures in MC
(2)], which is just such as to cancel the contributions madestudies of thecanonicalensemble.

by the fluctuations about the saddle pdihé]. Consider, then, the implications of the scaling form Eq.
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(8b) for the canonical partition function, Eqlb). We sup- -0.95
pose initially (we shall have to refine the supposition,
shortly) that the relevant part of the energy spectrum is ad- 099092)
equately captured by E@8b). Then -1y
=
Z(p,L)=e B Z(y), 9) £ .l
\./w -
where A,
v \
fo(B)=PBec—sc (10) 11
and
~1.15 : :
T 0 002 . 004 0.06
~ - X < L
Zy)- [ a5 eI,
m FIG. 1. The canonical mean of the energy density for the critical
: d=3 Ising model as a function of system siz#]. The statistical
while i .
errors are an order of magnitude smaller than the symbol size. The
y= a;lL 1/V( B—Be) (12) points marked® are taken from Ref225]. The relevant parameters

have been assigned the vall@$] «=0.108p=0.630 67, and3.

provides a scaling measure of the deviation from the criticaFF 0.221654 4. The arrow identifies the best-fit value for the inter-
temperature. We have made use of the hyperscaling relatidi¢Pt: prescribing the constaat [Eq. (21)].

[19] which links the correlation length index and the heat
capacity indexa through

1 1
-+ —= =d.
Vo Vg v

13

The scaling form of the free energy follows:

F(B,L)=—InZ(B,L)=L%y(B)—InZ(y)=F(B,L).

(14
The canonical energy pdf
P(elg,L)=Z"(B,L)0Q(e L) (15
may also be written in scaling form
P(e|B,L)de=P(x|y,L)dx, (16)
with
P(Xy,L)=Z"(y) #e“y*@(x’zf’(xw)-
17

The scaling predictions for the pdf may be tested by exam-
ining its cumulantg22], for which the free energy is a gen-

erator:

~ J"F(B,L)
(n) — n+1 nd
e"(B,L)y=(—1)""L —&,8” .

(18)

Equation(14) then implies that the cumulants have the scal-

ing form

eM(B,L)=[a.L ] XM (y)+ e, (19)

where the scaled cumular§”(y) are universal functions:

~ In Z
X(n)(y):(_l)né’n—z(y)'

(20)
ay"

The canonical mean of the energy density at criticality
(B=pB,) follows as

(e)e=eM(Be,L)=€.+[a L] XxD(y=0).
(21)

MC measurements on the 3d Ising model using a range of
system sizegFig. 1) are fully consistent with this behavior.

Equation(14) implies, likewise, that the canonical vari-
ance of the energy density should have the power-law behav-
ior

(o= (e)e=eP(Be,L)=a, L™ %P (y=0).
(22

MC measurementg§Fig. 2) are only partially consistent
with this prediction: the power law is confirmed, but with an
extrapolation whose intercept is far from zero. This inconsis-
tency is reflected in the rather limited succébsy. 3) of
attempts to collapse the measured energy pdf's for different
system sizes on to a single scaling form. The source of these
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FIG. 2. The canonical variance of the energy density for the
critical d=3 Ising model as a function of system sig4]. The
statistical errors are an order of magnitude smaller than the symbol
size. The parameters are as specified in Fig. 1. The arrow identifies
the best-fit value for the intercept, prescribing the constgnfEqg.

(30)].
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25 The n=1 correction is absent bffat: the choice ofe; en-
o L=10 e sures this. Th@=3 corrections are sufficiently strongly “ir-
2.0 L=20 FE relevant” (they vanish sufficiently strongly with) that they
e ,g? % may reasonably be neglected. But thre2 correction decays
d15 F % only slowly,
1
20l ,«f p _ AxP(L)=—agL ™ "Af{P=all " “"co=—g(L),
N 1
Ay £ % (28)
/
0.5 j Y T where the last stepefines gL) (a convenient parameer
‘?’% while

0.0 : :
-075 -05 -025 0 0.25 0.5 2
J°AT(B,L
X Coc="— Af(cz): — & (29

2

FIG. 3. The canonical pdEgs.(15—(17)] of the scaled dimen- P Be
sionless energy density of the critical d=3 Ising model, for a
range of system sizes. The scaled variable is defined if@Equith IS identifiable as the constant “background” to the near-
the choice(cf. Fig. 1) e.= —0.9909. The scale factar, implicit in critical canonical specific heat. With this addition, E2QR) is
the scale of thex variable is chosen such thitf. Eq. (6)] x=¢  modified to read
— ¢, for L=10.

L(€%)c—(e)e]=L""a_?xP(y=0L)

problems can be guessed from the implications of [28) B
for the canonical specific heat, which it mirrors: the scaling =L""a_ @ (y=0)+co;, (30
form fails to capture the effects associated with the constant = ) )
background which constitutes the dominant correction tdVhich is now fully consistent with the MC measurements of

pure scaling(power-law divergendeof the canonical spe- Fig. 2, with (it is to be noted a negativevalue forcg, [23].
cific heat. From a thermodynamic point of view these results simply

There are two ways to rectify this failure. One might ex- reflect the fact that, for any system size practically accessible
tend the theory to predict the behavior of theery) finite to computer-simulation, the “critical” contribution to the ca-
systems accessible to MC study; or one might seek to corre§lonical specific heat is not large enough to dominate the
the MC results to expose the true scaling behavior. We adoptoncritical background.” But the argument also shows us

the latter strategy. how to eliminate the effects of this background from the
Define energy pdf.
Consider the cumulant representati@2] of the scaling
Af(B,L)=L [F(B,L)-F(B,L)], (23 energy pdfiEq. (17)] at criticality:
the difference between the true free energy density and its - 1 (> i - (—iT)”~n
asymptotic scaling fornisee Eq.(14)]. We shall ignore the P(xly=0)= > d nZl o X (y=0).
effects of confluent singularities: they are not the dominant
“corrections to scaling” here. Theaf(B,L) is analytic and (31)
may be approximated, ne@., by the expansion The corresponding relation for thebservedenergy pdf at
. criticality, written in its inverse form, is
_ n
Af(B,L)= > Afgn)w_ (24) ° . n
n=0 nl ( I T) (n)
exp X, ——x"(y=0L)
=1 H
These additional contributions to the free energy imply ad- "
ditional contributions to the energy cumulatiig. 18: o o
" P gy cumulangs. 18 =f dx'e ™ "P(x'|y=0L). (32)
IAT(B.L) h
(n) —(_1\n+1 —=(n-1)d = )
Ae(BL=(=D"L 9g" - (2D Appealing to the our conclusion that, for large enolgtthe
cumulants of the two pdf's differ significantly only in the

At criticality Eq. (19) must then be modified to read n=2 case, and using Eq&7) and(28), we find that

eM(Be,L)=[aL™] "XV (y=0)+Ax"(L)]+€cdn1 E(xly:0>=ir dew dx’ el (XN r-a 712
2'77 — — o0

=[a L] "xMW(y=0L)+ €51, (26)
XP(x'|ly=0,L)
where
1 * "2
~ - = ra—(x=x")/[2g(L)]
AxP(L)=x"M(y=0L)-x"(y=0) ng(L)foodX ©

=(—1)" L d A 27 XP(x'|ly=0,L). (33
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175 ~ ; ' , ~ ; The scaling of the critical energy pdf corroborates the
s | :t:;g ] scaling of the microcanonical entropgf. Eq. (17)]. Given
L-32 the double appearance &fx) in Eq. (17), it is practical to
125 ¢ ] infer only the “effective” microcanonical entropy scaling
?’T 1h ] function
=
= K ~
= 0.75 5 . 1 —S"(X)
0s | ] Seﬁ(x)=8(x)+zln o (34
0.25
Figure 5 shows the form implied by EQL7):

0 i . . ) . .
-1 075 -05 025 0 025 05 075
X

P(x|y=0)

Seff(X) = ee(x=0) +In| =—————
Sar()=San(x=0)+In) 2= ==

. (35

FIG. 4. The data of Fig. 3 with the effects of the nonscaling
background convoluted out as prescribed by B3). _
We note as a matter of empirical fact tt&k(x) is concave.
This result shows that thecalingform of the critical pdf  The concavity ofS(x) itself is already assumed in our basic
may be exposed bgonvolutionof the observed(and thus,  scaling ansatf15].
generally, nonscalingpdf's with Gaussians whose widths
are controlled by the specific heat background. Note that the
argument rests on the fact that this background is negative
[so thatg(L) as defined in Eq(28) is positive. If the back- Although we have no first-principles calculation of the

ground constant were positive our argument would have tQcajing functionS(x) to offer here, we can identify, and test,
be restructured to prescribe the scaling form by a process @fome of the properties it must have to match anticipated
deconvolution, which is numerically problematic. As it is, hehavior in both the thermodynamic and finite-size-critical

the convolution process can be implemented easily. W§th  |imits. We consider, in particular, the limiting lardel be-
fixed by the ordinate intercept in Fig. 2, the pdf's measurechayior. In this regime we anticipate that

on different system sizes can each be corrected in this way to

yield estimates of the scaling pdf. The results are shown in E(X)z—b+|x|9+r+ (IX|>1), (36)
Fig. 4. The improvement with respect to the raw d#ig. 3) N N

is striking. This improvement reflects not only the removal\yhere the+ and — subscripts refer, respectively, to the
of the nonscaling contribution to the second cumulant bu‘fegions of positive and negati\’e To make exp"cit identi-
also that the requisite convolution process providesaral fications of the new quantities introduced in this equation
smoothing of the MC dat&28]. The consequences of this (the exponent and the amplitudeb. andr ), consider the
correction for theshapeof the distribution are also striking. scaling part of the partition functiofEg. (11)]. In the limit
The skewnes$29] clearly visible in the raw distributions of large|y| the integral in Eq(11) is dominated by one or

(Fig. 3) is largely suppressed to expose a scaling form that ispther of the largéx| regimes. Substituting E¢36), a saddle-
at first appearance, Gaussian. Indeed the portion of the digssint integration yields

tribution evident on the scale of Fig. 4 is Gaussian to within

IV. SCALING THEORY: IMPLICATIONS AND TESTS

deviations of a few percent. However the behavior in the InZ(y)=a.|y|"Vi+r.  (ly|>1) (37)
wings (evident on the logarithmic scale utilized in Fig. i§ - - '
markedly different on the high and low-energy sides. where thet+ and— subscripts now refer, respectively, to the
o regions ofnegativeand positive y[30], and
o L=10 1/(6—1)
a, [(b_
0r 1 _— | —
. b+) . (38

As in the argument leading to E¢B) the fluctuations about
the saddle point are canceled by the pre-exponential factor in
Eqg. (11 to leave power-law“In-free” ) behavior[31].

The thermodynamic limit of the near-critical free energy,
defined by Eq(14), now follows as

Seff(x)_geff(o)
8

F(B.L)=LYfo(B)—AL|B— B *1-r., (39

where we have identified
FIG. 5. The finite-size scaling function for the “effective” mi-
crocanonical entrop$.x(x) defined by Eq(34) and deduced from g=—— (40)
the critical canonical energy pdf, with the aid of E§5). Multihis- -«
togram methodg27] have been used to allow access to an extended
range ofx values. and[given Eq.(38)]
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1
< 055t
+

05

0.45 e . . . . .

1 2 3 4 5 6 7 8 9 10 0 S0 100 150 200 250 300
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FIG. 6. Estimates of the specific heat amplitude ratio, deduced
from the decay of the energy pdfor different system sizg¢sat
“large” (positive and negatiyex values. The estimates were deter-
mined by fitting to pairs of ranges of values, with the ranges
forming each pair being centered on a common value/&f which
forms the abscissa.

FIG. 7. The function IrZ(y) defined in Eq(11), deduced from
the microcanonical entropgFig. 5. The dimensionless variabie
provides a scaled representation of the redu@ederse tempera-
ture [Eqg. (12)]. The straight lines represent fits to the predicted
asymptotic formgEg. (37)]. The arrows identify the roles of the
parameters .. [Egs. (443, and(44b)] andU, [Eq. (46)].

A+_a+_
A a_

window of x values. Clearlyx must be large enough to lie
within the thermodynamic critical region; but it must also not
be so large that the associated energy lies outside the domain
To establish the role of the remaining constants)(in  of validity of the basic scaling ansaf&q. (8b)]. The sizeof
Eq. (36) we consider the anomalous contribution to the freethis window should increase with increasing system size.
energy[14] defined by The location of this window on thex axis may also be ex-
EB.L) pected to be different for the positive and negatixe
= dr: ) branches—if, as seems reasonable, one regardsothela-
Fa(ﬁ)=![nx[ F(BL)-L LI'an Ld ] - (42 yion length& (rather thark~ e— e, or y~8— .) as a mea-
sure of criticality. This is, indeed, the view we have adopted
Appealing to Eq.(39), and recalling our sign convention [33]. Thus Fig. 6 shows the results for the effective ampli-

b)l—a

b, (41

[30], we identify tude ratio, obtained by fitting over ranges»of/alues, with
each pair(of positive and negative rangdseing centered on

=y (B<Bc) the same value af=L/¢, used as the abscisg22]. On the

Fa(B)= —r_ (B> 43 pasis of this datd34] we make the assignmen, /A_

=0.575(10) which is to be compared with\, /A_
On the basis of rather general argumdi®d], we expect that =0.523(9) in Ref[13] and 0.567(16) in Ref.25].
away from a critical point the free energy anomaly is just |n Fig. 7 we show the results for if(y) that follow [cf.
minus the logarithm of the number of coexisting phases, sgqs. (11), (34), and (35)] from the measured energy pdf's,

that using Eq.(35). The latter determineS,4(x) only to within
r.=—Fa(B<Bc)=0, (449 ~ an additive constant which must be fixed by appeal to the
predicted value of either, or r _. We have chosen the
r_=—F.B>B)=In2. (44 latter so that Eq(44b) is satisfied, byfiat. The motivation for
this choice is that it provides us with an inherently more
In the critical finite-size limit we find from Eq(14) reliable estimate of the parametgg (which, unliker .., is

~ q ~ not knowna priori). Since —Ugy=In Z(0) is closer tor _
F(Be,L) =L o(Be) ~In 2(0). (49 than tor , the function InZ(y) converges more quickly to its
The critical value of the free energy anomaly, defining theY=0 asymptote than it does to ifs<0 asymptote. Fixing

Privman-Fisher constatd,, [14], follows as r_ (the intercept of they>0 asymptote thus tethers the
value assigned td&J, more effectively than fixing , . As
Uo=F.(B.)=—InZ(0). (46)  With the amplitude ratio considered above, the value as-

signed toU, depends upon the range yp¥alues used in the

These predictions are testable to varying degrees throudit to the anticipated asymptotic forfitq. (37)]. Again we
both the energy dependence of the energy pdf and the tenvave chosen to characterize the temperature range utilized
perature dependence of the associated free energy. through the value of the ratib=L/¢; again we can expect

Figure 6 shows the results for the ratio of the specific heathe analysis to be trustworthy only if it is based upon data
amplitudes that follow from Eq(41) when the measured lying within the thermodynamic-critical window. Our data
decay of the critical energy pdFigs. 4 and bis matched to  (Fig. 8) do not allow a systematic analysis of the approach to
the prediction(36), in conjunction with Eq.(17). We can the desired limit, but they provide the basis for the assign-
expect the predictions and observations to match up only in mentU,= —0.57(2)[34]. The assignment of the uncertainty
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e=€“%(B,L). (50)

Equations(49) and (50) make it immediately plain that the
energy-temperature relationships associated with the two en-
sembles will coincide to the extent that the canonical energy
distribution is Gaussian(and thus has coincident meah®

and mode%ce). This correspondence is guaranteed in the
L-20 thermodynamic limit, but notin general when finite-size

effects are significant.
075 , , , , , The energy-temperature rglationships are most usua_ll!y
3 5 7 9 113 probed through their derivatives, the associated specific
L/E heats. In the microcanonical case
FIG. 8. Estimates o), [Eq. (46)], determined, as in Fig. 6, for e 1 5 -1
a sequence of different ranges lof¢ values; the midpoint of the  cre(e | )= — M =_d M 7
range defines the abscissa. de Je?

(51)
limit is subjective but, we think, conservative. We note the ) o
close correspondence with the assignmebly£ —0.57) where, again, thg dependence of the rhs is illusory.

emerging from an earlier study6], similar in concept, but In the canonical casgappealing to Eq(18)],
utilizing the distribution of the order parameter. However our oL
assignment differgin what would seem to be a statistically ce(B.L) = — €5 (B,L) L9 L), 52

significant fashiopfrom the resulty = —0.625(5) obtained

B
by Mon [35] on the basis of altogether different techniques. ) )
Like the two “caloric equations of stateTEgs. (49) and

(50)] these two specific heats are guaranteed to agree in the
thermodynamic limit, but they diffein general in the
finite-size critical regime to which we now turn.

V. MICROCANONICAL AND CANONICAL SPECIFIC
HEATS

A. Generalities

Thus far we have focused on the implications of thie B. Scaling forms

crocanonicalentropy for 0bservatior_15 ma_de in tban_or_wical_ First we examine the asymptotic scaling regime where the
ensemble. We now turn to a consideration of their implica-the background contribution to the specific heat can be ne-
tions for observations made within ensembles that@arare  glected. We will consider the consequences of the correc-

approximations tpmicrocanonical. tions associated with the latter in Sec. V C.

We will assum€in keeping with e.g., Ref$2,8]) that the In the scaling regime where the canonical energy pdf may
temperature of a microcanonical system should be identifie@de represented by its scaling fofgs. (16) and (17)], Eq.
from the relation (48) can be rewritten in terms of the energy and temperature

scaling variable$Eqgs.(6) and(12)] as
ve(e L):L_dalnﬂ(e,L) a7 ~ _
pe, ge JINP(Xy)  9Zen(X)

e —
O . (53)

This identification is certainly required in the thermodynamic
limit; but in the context of systems of finite size it is, it \where in the last step we have exercised the right toyset

seems, a mfatte_r of conventi@.’&?]. _ _ =0 (the result is independent ¢f) and have made use of
It is illuminating to link this temperature witeanonical  Egs. (17) and (34). The microcanonical specific heBEq.
observables. Appealing to E(L5) we may write (51)] follows in scaling form,
alnP(elB,L) ct(e,L)=L""a_ %c 4(x), (54a

B“e(e,L)=p+L "¢ (48)

Je
with

where (notwithstanding appearances to the contrattye 5 . .

right-hand side depends anbut not 8. This result shows ~ e #’InP(x|y=0) 3?Sei(X)

that the equation prescribing the microcanonical temperature (X)) =~ e a2 |

for a given energy is just the inverse of the equation prescrib- (54h)

ing themost probable energfor a given temperature:

-1

R The scaling form of the canonical specific heat follows in a
B=pB"¢(e,L)=e=€(B,L) (49 similar fashion, using Eqg19) and (52),

By comparison, within the canonical ensemble itself, the en- co¥(B,L)= La/va;ZEce(y), (553
ergy for a given temperature is customarily identified with
the canonicamean with (Eq. 22:
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I system of finite size, critical fluctuations sample a region of
0.09 | - ;:/Iz;ré::ci;foflsiialfss ] the entropy surface sgfficjgntly large that the variation of its
"1 -~ Thermodynamic limit curvature becomes significant. We can expose the conse-
quences analytically within an anharmonic perturbation
theory in the cumulants of the energy pdf. The calculation is
straightforward, and we describe it in outline only.

We appeal to the cumulant representation of the energy

pdf at some(general temperature
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FIG. 9. Comparison of the dimensionless microcanonical andVe expand perturbatively to first order in the fourth cumu-
canonical specific heat scaling functiom® [Eq. (543] and ¢ lant and to second order in the third. We evaluate the second
[Eq. (553)], plotted as a function of the scaled dimensionless temderivative of the logarithm of this function, which deter-
perature{Eq (12)]. The light dashed line shows the power-law be- Mines[cf. Eq. (51)] the microcanonical specific heat associ-
havior characterizing the thermodynantiarge|y|) limit, extended ~ ated with a given energy density. We evaluate this function

back into the finite-size-limited region. at the modal energy=€(,L) associated with the chosen
temperature, prescribed by tleerturbativg solution of the
ce(y)=x3(y). (55p  microcanonical caloric equation of stdtéq. (48)]. The re-
sult is

The forms of both the scaling function&®(x) andc®®(y) .
can be determined from the scaling form for the microca- ¢*®(e,L)=c%(B,L)
nonical entropy(Fig. 5 or, equivalently, the critical canoni-
cal energy pdf(Fig. 4), established in Sec. V A. They are w11 e(B,L)eD(B,L)~[€3)(B,L)]?
compared in Fig. 9. In the microcanonical case we have used 2[e@(B,L)]°
Eq. (53) to identify the microcanonical temperatung
=y*€(x) to be associated with a given value of the energy N ]

variablex. (57)
In the thermodynamic limit realised at large valuegydf
the two functions are, necessarily, consistent with one an-
other, and approach the asymptotic behavior implied by Eqd
(39). In the finite-size-criticalsmall |y|) regime, however,
clear differences between the two scaling forms are appare
In particular, the microcanonical maximum exceeds the ¢
nonical maximum by some 10%. One can sh@ppendix
C) that this—the fact that the microcanonical maximum is
the larger one—follows necessarily if the scaling function
S(x) is concave. dceé(B,L)
The two scaling functions cross very close to the point e®(B,L)=0= —dg (58
(y=0) identifying the bulk critical temperature. One can see
this already in published microcanonical d@&d; a similar At this temperature Eq57) simplifies to
“ensemble independence” has also been noted in studies of
the “Gaussian ensemblef38]. We have been unable to see L@, L)
any deep reason for this correspondence, but we do not dis- c*®(€m,L)=Cc%%( By, L) — - w7
count the possibility that there is one. 2e@(Bp L)
Though clearly visible, the differences between the two
scaling functions are smaller than suggested by existing M@here e,,= (B,,,L), and we have used E¢52). Now we

Equation(18) shows that the cumulant correction terms
isplayed in this equation a@(L ~%) in the thermodynamic
limit, confirming the equality of microcanonical and canoni-
Nal predictions in this limit. To see what happens in the
Afinite-size-critical region we focusfor simplicity) on the
temperatureB,, for which the canonical specific heat is
maximal, identified by the solution of

data[8]. Sec. V C explains why. appeal to the scaling forms for the cumulafs). (19)], and
fold in the effects of the additional nonscaling contribution to
C. Beyond scaling: The role of the “background” the second cumulanEg. (28)] to conclude that

To understand the behavior observed in MC studies of
microcanonical behavior, we must allow for the corrections el _ ce _
; - , c**(€m,L)=c"(Bm,L)
to scaling which, in the canonical ensemble, are reflected

La XD (ym)

2[xA(ym—g(L)]

simply in the existence of the additive negative background (60)
contribution to the heat capacity; their signature in the mi-
crocanonical ensemble is more subtle. This result makes cledelbeit perturbativelythat, in the

The differences between the canonical and microcanonifinite-size-limited regime, the temperature-independent addi-
cal results is effectively a strongly anharmonic effect: in ative background constant in the canonical specific heat
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[manifested in the parametg(L)] does not simply translate largely consistent with establishedl 3sing critical proper-

into an additive energy-independent background in its microties.

canonical counterpart. Third, we have provided a finite-size scaling theory of the
To expose the implications for the difference between camicrocanonical ensemble. This was the original motivation

nonical and microcanonical specific heats we introduce théor this work—specifically, the suggesti¢8] that the finite-

dimensionless parameter size smearing of critical behavior characteristic of the ca-
nonical ensemble is greatly reduced within the microcanoni-
cHe( ;m,L)—Cce(Bm,L) Xy, cal framework. Referend@] offers two pieces of supporting
R(L)= =—— evidence for this contention, which merit final comment.
c“(Bm,L) 2[xP(ym) —g(L)]? Referencd8] suggests, first, that, in the vicinity ef , the

microcanonical entropymeasured with the techniques de-
scribed in Ref[40]) can be adequately represented by a form
[Eqg. (6) of Ref.[8]] which allows forno finite-size correc-

S (61)

Then tions at all, and which corresponds essentially to the large
~2) 2 2 limit [Eq. (36)] of our scaling function. In fact the quality of
R(L) _ X 2(Ym) _|1_ Coc 62) the fit provided by this representation is rather poor, and we
R(®) [ X®(y,)—g(L) c®®(Bm,L)] would expect it to be so. The measured microcanonical en-

tropy evolves in amanifestly smoothvay [41] between the

whereR() is the scaling limit ofR(L). limiting thermodynamic forms appropriate above and below

The significance of the background constegt—in par-  €c; EQ. (6) of Ref. [8] is non-analytic ate;. Moreover, in
ticular, itssign—is now apparent. Theegativevalue of this ~ analyzing data for the entropy and its derivatives, it is — we
constant results in aamplificationof the difference between have seen — essenti@n all systems practically accessible
the microcanonical and canonical resiisg,,,), to a degree to do justice to the corrections associated with the back-
that diminishes with increasing system size. This is not simground constant,.. Even in the thermodynamic limit the
ply the trivial effect that would arise from a uniforfdown-  corrections allowed for in Eq8) of Ref.[8] do not do this.
ward shift of both functions: Eq(60) shows that this is not ~ The second piece of supporting evidence offered in refer-
what happens, as does the power of 2 on the right-hand sidence[8] is a striking enhancement of the critical peak in the
of Eq. (62). microcanonical specific heat, with respect to its canonical

It is not hard to track down the origins of this effect. The counterpart. As we have seen, this behavior is at least partly
difference between the canonical and microcanonical specifidue[42] to the effects associated witl; Fig. 9 indicates
heats is, we have noted, an anharmonic effect; in the presethiat the underlying differences are rather less dramatic.
context the corrections to scalimgduce (only) the second
cumulant of the energy pdf and thus, in a relative sense, ACKNOWLEDGMENTS
enhancethe anharmoni¢non-Gaussiancharacter of the en- N.B.W. acknowledges the financial support of the Royal

ergy pdf, as one can see immediately from a comparison Oéociety (Grant No. 1907§ the EPSRC (Grant No.

Figs.3and 4. , , GR/L91413, and the Royal Society of Edinburgh.
The effect is significant. Fot =10 (as used in the simu-
lations reported in Ref[8]), estimating c**(Bny,L) by APPENDIX A: DEFINING A DENSITY OF STATES

c°®(B¢,L) one can read off from Fig. 2 thaR(L)/R() ) ) ) o
~ 4. The somewhat unexpected conclusion that the fractional Here we discuss, in general terms, the issues arising in
difference betweert®® and c#® at bulk criticality actually defininga density of states function for a system in which the

decreasesor increasingL is consistent with some MC stud- €nergy spectrum is discrete. The conventional arguifssjt
ies[39]. makes the identification

Q(e,L)de= Qq, Al
VI. CONCLUSIONS (€,L)de E<E§E+5E s (A1)

We review, briefly, the three principal strands of this with the implicit assumption that the right-hand side is pro-

work. . i d : : . -
First, we have broached the general question of the finitegg:]téonal t0oE(=L"5€). This requires the following condi

size corrections to the density of states of a many-body sys- Condition 1: There exist many distinct levedsvithin the
tem. The explicit proposal for the pre-exponential structurem,[erval SE
advanced in Eq(2) is consistent with the pre-factor-free '

structure of the canonical partition functipb0] and with the Cond|t_|on 2: The level degenerady; is slowly varying
over the intervaE— E+ 6E.

behavior of the simple models discussed in Appendix B. . o .

; - : : : The fractional variation of) ¢ over the intervabE can be
Given the growing interest in the behavior of mesoscopically__.. . ) S
. . . estimated using Eq47); condition(2) can then be expressed
sized systems, this proposal seems to merit some furth% the form
study, with more rigor than we have attempted to offer here.

Second, we have shown how one can fold out from the dinQ(e,L)

canonical energy fluctuation spectrum the principal correc- T5€=B“e(6,L)5E<1- (A2)
tions to scaling. The underlying behavior exhibits scale in-
variance to a degree that seems remarkable, given the rel@iaken together, condition&l) and (2) thus amount to the

tive weakness of energy fluctuations. It is, we have seen, als@quirement that
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1

< ——\
B*(e,L)

N N
(A3) E({n})zhjgl njvjzjgl €j

where 6E, characterizes the intrinsic discreteness of the engdives the energy of a microstate in whitfor eachj) mode
ergy spectrum. This condition is trivially satisfied in the clas-j has quantum numben;. We consider the classicah(
sical limit (Appendix B 1 considers one case explicitiput ~ —0) limit, in which the energy levels are quasicontinuous.
there are obvious exceptions: in the Ising mogigppendix  In this casesE, ~hvy,, Eq. (A3) is satisfied, and we may
B 2) Eq. (A3) is satisfied only at energies corresponding toproceed as in E¢Al) to write
microcanonical temperatures that are “high” on the scale of 1
the c_rltlcal temperature. Or, to put it another wdy, is QeN)=— D(E({n})—Ne),
certainly not slowly varying over a range wide enough to de Tnl
embrace many system energy levels. We must now recog-
nize, however, that EGA1) (along with its implicit assump- where
tions) does not faithfully reflect the conditions needed to )
legitimize the transition from discretfEq. (1a)] to con- D(X) = 1 if 0<X<Noe
tinuum [Eq. (1b)] representations. Instead of EGALl) we (X)= 0 otherwise,
require, rather, that we can consistently write
while e=E/N is the energy per oscillator. In the—0 limit

Q(eL)e FEse= E 0o FEs (A4) the sums om; can be replaced by integrals epto give
TR Q(eN)=€ ENQIN)I(N),
where[while retaining condition1)] we must replace con-
dition (2) by Condition 2A:Q e~ #s is slowly varying over
the intervalE— E+ SE, if that interval lies in a range con- N
tributing significantly to the thermal properties at tempera- (N =11 J dx; 5( 1-> Xi)

j=1Jo ]

where

ture B. The rangecontributing significantly. . . is centered

on the saddle poinE=L% [Eq. (5)]. As a result, while
condition(2) requires Eq(A2), condition(2A) requires only &N
that 1
N =TT —.
d?>InQ(e,L) ) g 1o QIN) 11;[1 hy;
—256 =L Y c*¥(e )] TOE“<1, (AD)
de Writing an integral representation of th&function we find

where we have used E(b1). Thus, in place of EqA3), we [44]
need simply eh— 1IN 2 =
0 } = ;L dhcog (N—2)h]

|(N)=if+xdhe*ih
5E|<[LdC'U“e(6,L)]1/22Ld[ 6(2)(:8Mev|-)]1/21 (AG) 27 )

N

sinh

where the last step uses E&2), and g*¢= 5*¢(¢,L) [EQ. )

(47)]. This equation expresses more explicitly the implica-
tions of condition(2A). A density of states function will
exist in the operational senfgg. (1b)] that it may be used to
compute thermal properties at a given temperature as long
the canonical energy distributioffor that temperatudeis
broad on the scale of the intrinsic discreteness of the energy
spectrum.

which may be approximated using the asymptotic expansion
égr theI function[44]:

I'(z2)=\27z" e~ 1+0(z"1)]. (B1)

In analyzing the remainingenergy-independentontri-
bution we suppose that the frequency spectrum is that of a
APPENDIX B: DENSITY OF STATES d=1 system of particles, with a gap. Then
OF SIMPLE MODELS

Here we show that the general form for the density of NQ(N)==Ninh=Nay,

states function proposed in E) is consistent with exact

X where the su may be written in the form
results for two simple models. TN May

1N Nt 27
1. Quasicontinuous energy spectrum: harmonic lattice model qN:N 21 In V‘:N 20 H N /)
I= r=

Consider a systerta harmonic model of the vibrations of
a crystal structure, for examplevhose energy spectrum is where H(6) is periodic, and(invoking the assumed gap
that of N weakly-interacting harmonic oscillators, with asso- H(0) is nonzero. It can be showa5] that theN— c limit of
ciated frequencies;,j=1---N. Then this sum,
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1 (2= vides an upper bound for the canonical specific heat, within
qw:ﬁfo H(6)dé, the asymptotic scaling region. The argumesisumeshe
concavity of the functionSe(x); the concavity ofS(x) is
has finite-size corrections that are exponentially small in N.already presupposed in the formulation of E2).
Gathering these results together we conclude that the den- We write the scaling function for the energy pfEg.
sity og states has the form of ER) with the identifications  (17)] in the form:
N=L%and

P(Xly)=Q(x,Y)G(x—X(y),— 1/8i¢(x*)),  (CD)

€
s(e)=In

o= ut 1. (B2)

whereG(z,b) is a Gaussian of zero mean, and variabce

Appealing to Eq(3) one can readily recover, as a check, the;((y) is the modal scaled energy, for a givgrthe solution of
canonical partition function '

Z(B.N)=(ph) Ne N, dSer(x)
dX _y;

(C2

2. Discrete energy spectrum: 8 Ising model ) ) ) .
) ) ) ) o andx* locates the maximum of the microcanonical specific
Consider ad=1 Ising model ofN sites, with periodic heat, identified by the conditiofEq. (54b)]
boundary conditions. Choosing the ground state as the en-
ergy zero, the energy density for a macrostat&lofiomain T x)<T (x* c3
walls ise=M ¢, /N, wheree, is the domain wall energy. The et X) = Ser(X")- ©3

number of microstates corresponding to macrostathl is The functionQ(x,y) introduced in Eq(C1) is defined by

2XN! Q(x,y) = QoeT™), (ca)

RN vyTTVIE

Appealing to the asymptotic forrtB1) once more, we find where
that =

X
S (X)) (CH)

N T(%,Y) == Xy+Ses(X)
Qun=21/ E[X(1_X)]fllzfox(l_X)fN(lfx)

. while Qg is anx-independent constant, defined by normal-
X[1+O(N"9)], ization. From the assumed concavity&3(x) it is straight-
wherex=M/N= /e, . In this caseE, = ¢, , and Eq(A3) is forward to show that, for any givey, T(x,y) is concave in

not in general satisfied. But, since H@6) is satisfied, we X With a single maximum ax=x(y).

may still identify a density of states by Now appealing to Eq9C1) and(55h), we can write
1 ce, —(2)
Q(eN)= =y 1. c*(y) =x7(y) (C6)
26| ’
which one may then readily recast in the form of E2).with = J dxP(x]y)[x—xB(y)]?
the identificationdN =L and
s(e)=—(1-x)In(1—x)—xInx. (B3) $f dxP(X|y)[x—x(y)]?
Again, as a check, one can readily use this result to recover . T
the canonical free energy density in the form =J dzQ(X(y) +2,y)G(z, — 11Si(x*))z
1 ~ -
f(,B,N)z—NInZ(ﬁ,N)=—In(2 coshK)+K, =J dzQ(z,y)G(z, — 1/SL(x*))Z?, (C?

where K= B¢, and the last term reflects our choice of where
ground state energy.

~ 1 . -
APPENDIX C: A BOUND ON THE CANONICAL SPECIFIC Q(zy)= §[Q(X(Y)+Z,Y)+Q(X(y)—z,y)]
HEAT
Here we outline an argument establishing that the maxi- QO[eT(;((sz,y)JreT(;(y)fz,y)]_ )

mum of the value of the microcanonical specific heat pro- 2
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From the properties of the functioR(x,y) it is straight-

forward to show thaf(z,y) has a single turning poirat
z=0), and that there exists sormg(y) such that

>1
<1

it |z]<zo(y)

. (01°)
it 21> 2o(y). (€9

Q(zy)

Then, finally, appealing to Eq$C7) and (54b),
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Coe(y) —cre(x*) < J d4 Q(z,y)—11G(z,— 1/S4(x*))2?

<2(y) f d4D(2,y) - 116z — 1L (x"))

=0, (C10

where the last step exploits normalization conditions. It fol-

lows that the microcanonical specific heat maximesfi(x*)
provides an upper bound for the canonical specific heat.
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